
A reason for unexplained
connection timeouts on
Kubernetes/Docker
Maxime Lagresle Feb 22, 2018

Abstract

The Linux Kernel has a known race condition when doing source network
address translation (SNAT) that can lead to SYN packets being dropped.
SNAT is performed by default on outgoing connections with Docker and
Flannel using iptables masquerading rules. The race can happen when
multiple containers try to establish new connections to the same external
address concurrently. In some cases, two connections can be allocated
the same port for the translation which ultimately results in one or more
packets being dropped and at least one second connection delay.

This race condition is mentioned in the source code but there is not much
documentation around it. While the Kernel already supports a flag that
mitigates this issue, it was not supported on iptables masquerading rules
until recently.

In this post we will try to explain how we investigated that issue, what this
race condition consists of with some explanations about container
networking, and how we mitigated it.

Edit 15/06/2018: the same race condition exists on DNAT. On
Kubernetes, this means you can lose packets when reaching ClusterIPs.
For those who donʼt know about DNAT, it s̓ probably best to read this
article first but basically, when you do a request from a Pod to a ClusterIP,
by default kube-proxy (through iptables) changes the ClusterIP with one
of the PodIP of the service you are trying to reach. One of the most used
cluster Service is the DNS and this race condition would generate
intermitent delays when doing name resolution, see issue 56903 or this

https://tech.xing.com/@maxime.lagresle
https://www.docker.com/
https://github.com/coreos/flannel
https://github.com/torvalds/linux/blob/24de3d377539e384621c5b8f8f8d8d01852dddc8/net/netfilter/nf_nat_core.c#L290-L291
https://github.com/kubernetes/kubernetes/issues/56903


interesting article from Quentin Machu.

Introduction

Iʼm part of the Backend Architecture Team at XING. The past year, we
have worked together with Site Operations to build a Platform as a
Service. In September 2017, after a few months of evaluation we started
migrating from our Capistrano/Marathon/Bash based deployments to
Kubernetes.

Our setup relies on Kubernetes 1.8 running on Ubuntu Xenial virtual
machines with Docker 17.06, and Flannel 1.9.0 in host-gateway mode.

While migrating we noticed an increase of connection timeouts in
applications once they were running on Kubernetes. This became more
visible after we moved our first Scala-based application. Almost every
second there would be one request being really slow to respond instead
of the usual few hundred of milliseconds. The application was exposing
REST endpoints and querying other services on the platform, collecting,
processing and returning the data to the client. Nothing unusual there.

The response time of those slow requests was strange. Almost all of them
were delayed for exactly 1 or 3 seconds! We decided it was time to
investigate the issue.

Narrowing down the problem

We had a ticket in our backlog to monitor the KubeDNS performances. As
depending on the HTTP client, the name resolution time could be part of
the connection time, we decided to tackle that ticket first and make sure
this component was working well. We wrote a small DaemonSet that
would query KubeDNS and our datacenter name servers directly, and
send the response time to InfluxDB. Soon the graphs showed fast
response times which immediately ruled out the name resolution as
possible culprit.

https://blog.quentin-machu.fr/2018/06/24/5-15s-dns-lookups-on-kubernetes/
https://www.xing.com/
https://github.com/coreos/flannel/blob/master/Documentation/backends.md#host-gw


The next step was first to understand what those timeouts really meant.
The team responsible for this Scala application had modified it to let the
slow requests continue in the background and log the duration after
having thrown a timeout error to the client. We took some network traces
on a Kubernetes node where the application was running and tried to
match the slow requests with the content of the network dump.

containerʼs perspective, 10.244.38.20 trying to connect to 10.16.46.24 on port 80

The results quickly showed that the timeouts were caused by a
retransmission of the first network packet that is sent to initiate a
connection (packet with a SYN flag). This was explaining very well the
duration of the slow requests since the retransmission delays for this kind
of packets are 1 second for the second try, 3 seconds for the third, then 6,
12, 24, etc.

This was an interesting finding because losing only SYN packets rules out
some random network failures and speaks more for a network device or
SYN flood protection algorithm actively dropping new connections.

On default Docker installations, each container has an IP on a virtual
network interface (veth) connected to a Linux bridge on the Docker host
(e.g cni0, docker0) where the main interface (e.g eth0) is also connected
to (6). Containers talk to each other through the bridge. If a container tries
to reach an address external to the Docker host, the packet goes on the
bridge and is routed outside the server through eth0.

The following example has been adapted from a default Docker setup to
match the network configuration seen in the network captures:

https://docs.docker.com/engine/userguide/networking/#an-overlay-network-without-swarm-mode


in reality veth interfaces come in pairs but this doesn't matter in our context

We had randomly chosen to look for packets on the bridge so we
continued by having a look at the virtual machine s̓ main interface eth0.
We would then concentrate on the network infrastructure or the virtual
machine depending on the result.

capture from veth0, cni0 and eth0, 10.244.38.20 trying to connect to 10.16.46.24 on port 80

The network capture showed the first SYN packet leaving the container
interface (veth) at 13:42:23.828339 and going through the bridge (cni0)
(duplicate line at 13:42:23.828339). After one second at 13:42:24.826211,
the container getting no response from the remote endpoint 10.16.46.24
was retransmitting the packet. Again, the packet would be seen on the
container's interface, then on the bridge. On the next line, we see the
packet leaving eth0 at 13:42:24.826263 after having been translated from
10.244.38.20:38050 to 10.16.34.2:10011. The next lines show how the
remote service responded.

What this translation means will be explained in more details later in this
post. Because we canʼt see the translated packet leaving eth0 after the
first attempt at 13:42:23, at this point it is considered to have been lost
somewhere between cni0 and eth0. It was really surprising to see that
those packets were just disappearing as the virtual machines had a low
load and request rate. We repeated the tests a dozen of time but the
result remained the same.



At that point it was clear that our problem was on our virtual machines and
had probably nothing to do with the rest of the infrastructure.

Now that we had isolated the issue, it was time to reproduce it on a more
flexible setup. We wrote a really simple Go program that would make
requests against an endpoint with a few configurable settings:

the delay between two requests
the number of concurrent requests
the timeout
the endpoint to call

The remote endpoint to connect to was a virtual machine with Nginx. Our
test program would make requests against this endpoint and log any
response time higher than a second. After a few adjustment runs we were
able to reproduce the issue on a non-production cluster.

Netfilter and source network address translation

For the comprehension of the rest of the post, it is better to have some
knowledge about source network address translation. The following
section is a simplified explanation on this topic but if you already know
about SNAT and conntrack, feel free to skip it.

Not only is this explanation simplified, but some details are sometimes
completely ignored or worse, the reality slightly altered. Youʼve been
warned!

Container IP and datacenter network infrastructure

On a default Docker installation, containers have their own IPs and can
talk to each other using those IPs if they are on the same Docker host.
However, from outside the host you cannot reach a container using its IP.
To communicate with a container from an external machine, you often
expose the container port on the host interface and then use the host IP.
This is because the IPs of the containers are not routable (but the host IP
is). The network infrastructure is not aware of the IPs inside each Docker



host and therefore no communication is possible between containers
located on different hosts (Swarm or other network backends are a
different story).

With Flannel in host-gateway mode and probably a few other Kubernetes
network plugins, pods can talk to pods on other hosts at the condition
that they run inside the same Kubernetes cluster. You can reach a pod
from another pod no matter where it runs, but you cannot reach it from a
virtual machine outside the Kubernetes cluster. You can achieve this with
Calico for example, but not with Flannel at least in host-gw mode.

Source network address translation

If you cannot connect directly to containers from external hosts,
containers shouldnʼt be able to communicate with external services either.
If a container sends a packet to an external service, since the container
IPs are not routable, the remote service wouldnʼt know where to send the
reply. In reality they can, but only because each host performs source
network address translation on connections from containers to the
outside world.

Our Docker hosts can talk to other machines in the datacenter. They have
routable IPs. When a container tries to reach an external service, the host
on which the container runs replaces the container IP in the network
packet with its own IP. For the external service, it looks like the host
established the connection itself. When the response comes back to the
host, it reverts the translation. For the container, the operation was
completely transparent and it has no idea such a transformation
happened.

Example: A Docker host 10.0.0.1 runs a container named container-1
which IP is 172.16.1.8. The process inside the container initiates a
connection to reach 10.0.0.99:80. It binds on its local container port
32000.

g. The packet leaves the container and reaches the Docker host with

https://www.projectcalico.org/


the source set to 172.16.1.8:32000
h. The Docker host replaces the source header from 172.16.1.8:32000

to 10.0.0.1:32000 and forwards the packet to 10.0.0.99:80. Linux
tracks this translation in a table to be able to revert it in the packet
reply.

i. The remote service 10.0.0.99:80 processes the request and answers
to the host

j. The response packet reaches the host on port 32000 . Linux sees the
packet is a reply to a connection that was translated. It modifies the
destination from 10.0.0.1:32000 to 172.16.1.8:32000 and forwards
the packet to the container

Iptables and netfilter

Linux comes with a framework named netfilter that can perform various
network operations at different places in the kernel networking stack. It
includes packet filtering for example, but more interestingly for us,
network address translation and port address translation. Iptables is a tool
that allows us to configure netfilter from the command line. The default
installations of Docker add a few iptables rules to do SNAT on outgoing
connections. In our Kubernetes cluster, Flannel does the same (in reality,
they both configure iptables to do masquerading, which is a kind of
SNAT).

https://www.netfilter.org/


packets from containers (172.17.0.0/16 in this case) to anything but the bridge (docker0) will be masqueraded

When a connection is issued from a container to an external service, it is
processed by netfilter because of the iptables rules added by
Docker/Flannel. The NAT module of netfilter performs the SNAT operation
by replacing the source IP in the outgoing packet with the host IP and
adding an entry in a table to keep track of the translation. The entry
ensures that the next packets for the same connection will be modified in
the same way to be consistent. It also makes sure that when the external
service answers to the host, it will know how to modify the packet
accordingly.

Those entries are stored in the conntrack table (conntrack is another
module of netfilter). You can look at the content of this table with sudo
conntrack -L.

connection from a container 172.16.1.8k32000 to 10.0.0.99k80 on host 10.0.0.1

Port translation

A server can use a 3-tuple ip/port/protocol only once at a time to
communicate with another host. If your SNAT pool has only one IP, and
you connect to the same remote service using HTTP, it means the only
thing that can vary between two outgoing connections is the source port.

If a port is already taken by an established connection and another
container tries to initiate a connection to the same service with the same
container local port, netfilter therefore has to change not only the source
IP, but also the source port.

Example with two concurrent connections: Our Docker host 10.0.0.1
runs an additional container named container-2 which IP is 172.16.1.9.



g. container-1 tries to establish a connection to 10.0.0.99:80 with its IP
172.16.1.8 using the local port 32000

h. container-2 tries to establish a connection to 10.0.0.99:80 with its IP
172.16.1.9 using the local port 32000

i. The packet from container-1 arrives on the host with the source set
to 172.16.1.8:32000. There is no entry with 10.0.0.1:32000 in the
table so the port 32000 can be kept. The Docker host replaces the
source header from 172.16.1.8:32000 to 10.0.0.1:32000. It adds a
conntrack entry to keep track of the tcp connection from
172.16.1.8:32000 to 10.0.0.99:80, which was SNATed to
10.0.0.1:32000

j. The packet from container-2 arrives the host with the source set to
172.16.1.9:32000.10.0.0.1:32000 is already taken to communicate
with 10.0.0.99:80 using tcp. The Docker host take the first available
port (1024)and replaces the source header from 172.16.1.8:32000 to
10.0.0.1:1024. It adds a conntrack entry to keep track of the tcp
connection from 172.16.1.9:32000 to 10.0.0.99:80, which was
SNATed to 10.0.0.1:1024

l. The remote service answers to both connections coming from
10.0.0.1:32000 and 10.0.0.1:1024

m. The Docker host receives a response on port 32000 and changes the
destination to 172.16.1.8:32000

n. The Docker host receives a response on port 1024 and changes the
destination to 172.16.1.9:32000



this is how the conntrack table would look like

Note: when a host has multiple IPs that it can use for SNAT operations,
those IPs are said to be part of a SNAT pool. This is not our case here.

Back to the original story

Our packets were dropped between the bridge and eth0 which is
precisely where the SNAT operations are performed. If for some reason
Linux was not able to find a free source port for the translation, we would
never see this connection going out of eth0. We decided to follow that
theory.

There was a simple test to verify it. To try pod-to-pod communication and
count the slow requests. We ran that test and had very good result. Not a
single packet had been lost.

We had to look deeper into conntrack!

Conntrack in user-space

We had the strong assumption that having most of our connections
always going to the same host:port could be the reason why we had



those issues. However, at this point we thought the problem could be
caused by some misconfigured SYN flood protection. We read the
description of network Kernel parameters hoping to discover some
mechanism we were not aware of. We could not find anything related to
our issue. We had already increased the size of the conntrack table and
the Kernel logs were not showing any errors.

The second thing that came into our minds was port reuse. If we reached
port exhaustion and there were no ports available for a SNAT operation,
the packet would probably be dropped or rejected. We decided to look at
the conntrack table. This also didnʼt help very much as the table was
underused but we discovered that the conntrack package had a
command to display some statistics (conntrack -S). There was one field
that immediately got our attention when running that command:
“insert_failed” with a non-zero value.

We ran our test program once again while keeping an eye on that counter.
The value increased by the same amount of dropped packets, if you count
one packet lost for a 1-second slow requests, 2 packets dropped for a 3
seconds slow requests.

The man page was clear about that counter but not very helpful: “Number
of entries for which list insertion was attempted but failed (happens if the
same entry is already present).”

In which context would such an insertion fail? Dropping packets on a low
loaded server sounds rather like an exception than a normal behavior.

We decided to figure this out ourselves after a vain attempt to get some
help from the netfilter user mailing-list.

Netfilter NAT & Conntrack kernel modules

After reading the kernel netfilter code, we decided to recompile it and add
some traces to get a better understanding of what was really happening.
Here is what we learned.



The NAT code is hooked twice on the POSTROUTING chain (1). First to
modify the packet structure by changing the source IP and/or PORT (2)
and then to record the transformation in the conntrack table if the packet
was not dropped in-between (4). This means there is a delay between the
SNAT port allocation and the insertion in the table that might end up with
an insertion failure if there is a conflict, and a packet drop. This is
precisely what we see.

When doing SNAT on a tcp connection, the NAT module tries following
(5):

g. if the source IP of the packet is in the targeted NAT pool and the
tuple is available then return (packet is kept unchanged).

h. find the least used IPs of the pool and replace the source IP in the
packet with it

i. check if the port is in the allowed port range (default 1024-64512) and
if the tuple with that port is available. If that's the case, return (source
IP was changed, port was kept). (note: the SNAT port range is not
influenced by the value of the net.ipv4.ip_local_port_rangekernel
parameters)

j. the port is not available so ask the tcp layer to find a unique port for
SNAT by calling nf_nat_l4proto_unique_tuple() (3).

When a host runs only one container, the NAT module will most probably
return after the third step. The local port used by the process inside the
container will be preserved and used for the outgoing connection. When
running multiple containers on a Docker host, it is more likely that the
source port of a connection is already used by the connection of another
container. . In that case, nf_nat_l4proto_unique_tuple() is called to find
an available port for the NAT operation.

The default port allocation does following:

g. copy the last allocated port from a shared value. This value is used a
starting offset for the search

h. increment it by one

http://inai.de/images/nf-packet-flow.png
https://github.com/torvalds/linux/blob/1c8c5a9d38f607c0b6fd12c91cbe1a4418762a21/net/ipv4/netfilter/nf_nat_l3proto_ipv4.c#L358-L364
https://github.com/torvalds/linux/blob/24de3d377539e384621c5b8f8f8d8d01852dddc8/net/ipv4/netfilter/nf_conntrack_l3proto_ipv4.c#L196-L202
https://github.com/torvalds/linux/blob/24de3d377539e384621c5b8f8f8d8d01852dddc8/net/netfilter/nf_nat_core.c#L290-L301
https://github.com/torvalds/linux/blob/24de3d377539e384621c5b8f8f8d8d01852dddc8/net/netfilter/nf_nat_proto_common.c#L37-L85


i. check if the port is used by calling nf_nat_used_tuple() and start
over from 2. if that's the case

j. update the shared value of the last allocated port and return

Since there is a delay between the port allocation and the insertion of the
connection in the conntrack table, nf_nat_used_tuple() can return true
for a same port multiple times. And because
nf_nat_l4proto_unique_tuple() can be called in parallel, the allocation
sometimes starts with the same initial port value. On our test setup, most
of the port allocation conflicts happened if the connections were
initialized in the same 0 to 2us. Those values depend on a lot a different
factors but give an idea of the timing order of magnitude.

netfilter also supports two other algorithms to find free ports for SNAT:

using some randomness when settings the port allocation search
offset. This mode is used when the SNAT rule has a flag
NF_NAT_RANGE_PROTO_RANDOM active.
using full randomness with the flag
NF_NAT_RANGE_PROTO_RANDOM_FULLY. This takes a random number for
the search offset.

NF_NAT_RANGE_PROTO_RANDOM lowered the number of times two threads
were starting with the same initial port offset but there were still a lot of
errors. It's only with NF_NAT_RANGE_PROTO_RANDOM_FULLY that we managed
to reduce the number of insertion errors significantly. On a Docker test
virtual machine with default masquerading rules and 10 to 80 threads
making connection to the same host, we had from 2% to 4% of insertion
failure in the conntrack table.

With full randomness forced in the Kernel, the errors dropped to 0 (and
later near to 0 on live clusters).

Activating full random port allocation on Kubernetes

The NF_NAT_RANGE_PROTO_RANDOM_FULLY flag needs to be set on



masquerading rules. On our Kubernetes setup, Flannel is responsible for
adding those rules. It uses iptables which it builds from the source code
during the Docker image build. The iptables tool doesn't support setting
this flag but we've committed a small patch that was merged (not
released) and adds this feature.

We now use a modified version of Flannel that applies this patch and adds
the --random-fully flag on the masquerading rules (4 lines change). The
conntrack statistics are fetched on each node by a small DaemonSet, and
the metrics sent to InfluxDB to keep an eye on insertion errors. We have
been using this patch for a month now and the number of errors dropped
from one every few seconds for a node, to one error every few hours on
the whole clusters.

Conclusion

With the fast growing adoption of Kubernetes, it is a bit surprising that
this race condition has existed without much discussion around it. The
fact that most of our application connect to the same endpoints certainly
made this issue much more visible for us.

Some additional mitigations could be put in place, as DNS round robin for
this central services everyone is using, or adding IPs to the NAT pool of
each host.

In the coming months, we will investigate how a service mesh could
prevent sending so much traffic to those central endpoints. We will
probably also have a look at Kubernetes networks with routable pod IPs to
get rid of SNAT at all, as this would also also help us to spawn Akka and
Elixir clusters over multiple Kubernetes clusters.

I want to thank Christian for the initial debugging session, Julian, Dennis,
Sebastian and Alexander for the review

https://git.netfilter.org/iptables/commit/?id=8b0da2130b8af3890ef20afb2305f11224bb39ec
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/

